

Parametric study for the optimal release of thermal energy from composite materials.

UK Energy Storage 2019

Dr Robert Sutton

robert.sutton@swansea.ac.uk

info_specific
ActiveBuildings
GenerateStoreRelease

Release

Store

Agenda

Thermal Storage
 Project Drivers
 Material Selection

Oischarge Performance of Selected Materials

Parametric Study
 Volume and Flow

www.specific.eu.com

Thermal Storage

Thermochemical Storage

$AB + Heat \leftrightarrow A + B$

 $Salt \cdot x(H_2O) + Heat \leftrightarrow Salt + H_2O$

Thermochemical Storage

$AB + Heat \leftrightarrow A + B$

 $Salt \cdot x(H_2O) + Heat \leftrightarrow Salt + H_2O$

Thermochemical Storage

 $AB + Heat \leftrightarrow A + B$

Material Selection

Focussed on composite materials involving hydrated salts

Salt In Matrix (SIM)

Vermiculite:

- ◇ LiNO₃

MgSO₄

Discharge Performance

Discharge Reactor

Material Comparison

SIM	Peak ∆T ₁ (°C)	Ed ₁ (kWh/m ³)	Peak ΔT _e (°C)	Ed _e (kWh/m ₃)
V-CaCl ₂	25	217.0	10	66.3
V-LiNO ₃	11	321.5	4	66.9
V-MgSO ₄	16	76.9	4	2.2

Ed of optimised system is typically 250-500 kWh/m³

Transference of generated energy to exit biggest challenge

 V-LiNO₃ provides lower but more sustained ΔT Considerably more expensive than CaCl₂

Deliquescence

Salt Deliquescence

- Algeory Hygroscopic
- Over saturation of salt
- O 'Dampening' of generated energy

Material Agglomeration

- Barrier to material activation
- Soundary layer between 'activated' and 'un-activated' material

Summary of Discharge Performance

Material performance cannot simply scaled for building scale applications.

Salt deliquescence is a barrier to material performance.

Transit of moist air is limited to <100 mm from reactor inlet.</p>

Reactor design and operation are vital to the implementation of building scale systems.

www.specific.eu.com

Parametric Study

Reduced Path Length

- Path length <100 mm</p>
- Reduction in deliquescence
- Fully developed flow

250-500 g
 Parametric study
 Flow rate
 Volume

Volume and Flow Parameters

	30 mm	40 mm	50 mm	60 mm	70 mm
10 lpm					
20 lpm					
30 lpm					
40 lpm					

◇V-CaCl₂ ◇ 2:1 ratio

Performance @ P1- 30mm

Performance @ P1-40mm

Performance @ P1- 50mm

Performance @ P1- 60mm

Performance @ P1- 70mm

Performance @ P1- Time to PΔT

Performance @ P1- Ed

Performance @ Pe- 30mm

Performance @ Pe- 40mm

Performance @ Pe- 50mm

Performance @ Pe- 60mm

Performance @ Pe- 70mm

Performance @ Pe- Ed

Performance @ Pe- Time to P∆T

Summary

ΔT @ P2 ~ ΔT @ P1
ΔT @ P3 ~ ΔT @ Pe

Sexit Second Structure Second Struct

Common Trends

Increase material depth
Solution Stress Stress

Energy Recovery improves with > f.r.

robert.sutton@swansea.ac.uk

Swansea University Prifysgol Abertawe

release

Funders

Engineering and Physical Sciences Research Council

We work with Innovate UK

UNDEB EWROPEAIDD EUROPEAN UNION

Welsh Government

Cronfa Datblygu Rhanbarthol Ewrop European Regional Development Fund

Strategic Partners

store

generate

